Date: Fri, 12 May 2000 11:46:06 +0200 (CEST)
From: Vincent Rijmen <Vincent.Rijmen@esat.kuleuven.ac.be>

To: AESround2@nist.gov
cc: Jim Foti <jfoti@nist.gov>, Daemen Joan <daemen.j@protonworld.com>
Subject: comments

Please find in attachment some comments from Joan Daemen and myself.
Best regards,

Vincent

Vincent Rijmen |

| Pray to God, but keep rowing to shore.

phone +32 16 32 18 62 | -- Russian Proverb
vincent.rijmen@esat.kuleuven.ac.be | on provable security

The AES second round Comments of the Rijndael

Joan Daemen Vincent Rijmen

daemen.j@protonworld.com
vincent.rijmen@esat.kuleuven.ac.be

May 12, 2000

1 Introduction

In this note we firstly give our reaction to a number of publications related to Rijndael, that
were presented at the AES and FSE conference. We want to place a number of statements
in the right perspective.

Secondly, we provide some supplementary information to the official documentation. At
the time of submission, we did not anticipate all the questions and issues that would be
brought up. We hope that this note helps to enhance the understanding of Rijndael.

2 Security

2.1 Cryptanalytic attacks

In the original submission [6], we described a theoretical attack, that can break a 6-round
version of Rijndael, using 232 chosen plaintexts, and requiring an (off-line) effort of about 272
encryption. For 256-bit keys, this attack can ‘trivially’ be extended by guessing an extra full
round key. This results in an effort of about 22°° encryptions. This attack has been improved
upon by four groups of cryptanalysts [10, 2, 15, 12].

The best attack for 128-bit keys seems to be given in [12], were an attack is presented
on 7 rounds, ‘marginally faster than exhaustive key search’. The cost of this extension by a
single round is an increase of the workload by factor of 256, compared to the original 6-round
attack. If we compare to the improved 6-round attack published in [10], the increase in time
complexity due to adding a single round becomes 288,

For 256-bit keys, there are theoretical attacks for up to 8 rounds of Rijndael. The cost of
this additional round is a factor of 27® in workload and 2% in number of chosen plaintexts
required. Moreover, the number of rounds specified for 256-bit keys is 14, still giving 6 rounds
of margin.

We conclude that the number of rounds in Rijndael provides a sufficient margin of security
with respect to cryptanalytic attacks.

The key schedule In the original documentation [6, p. 28], we stated that one of the
design requirements of the key expansion is that ‘Knowledge of a part of the Cipher Key or
Round Key bits shall not allow to calculate many other round key bits.’

In [10] it was shown that for the case of a 256-bit key, the knowledge of 7 well-chosen
round key bytes allows the calculation of 28 bytes of the expanded key. This fact is used as
an argument to show that the design requirement is not fulfilled.

However, the primary requirements of the Rijndael key schedule are that it is efficient and
can be executed in a small amount of RAM. These requirements follow from our concern for
the performance in applications with a high key agility. This limits the choice to relatively
simple and invertible operation. Within the range of candidate operations, the key expansion
actually chosen was the best we could find with respect to the criterion stated above.

The goal of the Rijndael key schedule is the protection against related-key attacks, attacks
based on symmetry and (cryptanalytic) key splitting attacks. In our opinion, the protection
against attacks that first obtain key bits via side channel analysis (e.g., DPA) and then
reconstruct the rest of the key by cryptanalysis should not be addressed by the key schedule
itself. However, we do think that the operations used in the key schedule should be chosen
to allow for implementations that can provide protection against side channel attacks.

This ‘weakness’ in the Rijndael key schedule does not result in a better cryptanalytic
attack on Rijndael with 128-bit keys. The best current attack that exploits the weakness of
the Rijndael key schedule, is the related key chosen plaintext attack published in [10], that
breaks 9 rounds of Rijndael with 256-bit keys. The attack is an extension of the Square
attack and takes 2%° related-key chosen plaintexts and has a time complexity of 2224. It can
be considered as an extension of the 7-round attack by two more rounds at the cost of a
factor 2%® in amount of required chosen plaintext material and simultaneously a factor 2%° in
time complexity. The fact that 5 more rounds remain to be tackled before a valid (academic)
attack against Rijndael can be claimed makes us quite confident in the current key schedule.

2.2 Implementation attacks

Implementation attacks are an important threat in many applications. Remarks upon the
candidates’ resistance against implementation attacks have been made by several teams, each
of them related in a larger or lesser degree to one of the design teams [3, 4, 16, 7].

Since implementation attacks have been described only quite recently, there is not yet a
consensus on the best approach to make algorithms and implementations resistant against
these attacks. Some authors argue that key-related operations should be complex, in order to
make it difficult for attackers to determine key bits from obtained information [3]. Our view
is that simple operations should be used, because they are easier to protect by techniques like
k-way split implementation [5], and load balancing [7].

2.3 Future resiliency

Some authors place much emphasis on the topic of future resiliency [13]. Of course, it is wise
to build in some kind of ‘margin’ against evolutions in cryptography. On the other hand,
since is very difficult to predict the future, it is also very difficult to build in security against
attacks that yet have to be developed. Ranking the different algorithms with respect to their
assumed resistance against attacks that we cannot imagine now, is therefore very difficult.

2.4 Other results

Pseudo-Randomness In [17], some of the candidates are compared with respect to the
number of rounds they would need in order to get a certain level of pseudo-randomness. To

this end, not the actual algorithms are studied, but some of the building blocks are replaced
by idealised random functions. The paper than continues by comparing how well suited the
different algorithms’ structures are in generating pseudo-random outputs. While this analysis
can give interesting insights, there is a big IF attached. Looking at the results of the analysis,
it becomes clear that the size of the idealised building blocks greatly affects the outcome of
the analysis. The theoretical minimum number of rounds for pseudo randomness in the case
of a Feistel cipher with a 64-bit idealised block is 9; in the case of MARS and RC6, with
32-bit idealised blocks, this number becomes 25; in the case of Rijndael, with 8-bit idealised
blocks, this number becomes 384. Serpent, formerly assumed to be the most secure candidate
in the whole AES process, gets 4-bit idealised building blocks and is therefore punished with
an enormous minimum number of rounds.

The problem with this kind of analysis can best be illustrated with the case of Twofish.
Twofish can be considered as a generalised Feistel cipher, and if its 64-bit F-function is
idealised, it seems very secure. However, zooming in on the round function, we see that it
actually never operates on 64-bit quantities, and we might decide to equip it with idealised
32-bit building blocks. The result will be that the security of Twofish becomes comparable
with the security of MARS and RC6. However, zooming in even further on the Twofish
design, we see that its nonlinearity is based on 8-bit S-boxes, that are built by iterating 4-bit
S-boxes. If we decide to idealise only the 4-bit S-boxes, the theoretical minimum number of
rounds raizes to a level well above the Rijndael figure. There seems to be no unambiguous
way to decide on the size of the idealised components.

It can be useful to compare the results of [17] with the results obtained in [23, 24], where it
is claimed that, in general, SPN-networks, like Rijndael, perform better that Feistel structures.

3 Performance

3.1 Parallelism

The inherent parallelism of Rijndael allows to make optimal use of parallelism on many
modern processors [27] and in hardware. Some authors (e.g., [9, 25, 26]) compare performance
in applications with interleaving of multiple instances of the cipher. Interleaving allows ciphers
with little parallelism to use a parallel processor to its full extent. However, interleaving is
not possible in CBC mode, CFB mode or OFB mode, the modes that are currently used for
data encryption.

NIST can consider to define new modes of operation, in order to reduce the performance
penalty for using a cipher with suboptimal performance on parallel platforms. However, these
so-called interleaved modes are sub-optimal in reaching the goals for which the modes were
originally introduced. For instance, one of the most important applications of block ciphers
today is MACing. The block cipher is applied in CBC mode and (part of) the final block of
the cryptogram is used as MAC. The fact that the final block of the cryptogram depends on
all blocks of the message is an essential feature. If an interleaved CBC mode would be used,
the final cryptogram block only depends on a fraction 1/n of the message, where n is the
interleaving interval.

3.2 Decryption Performance

In the original Rijndael submission, we explained that in some implementations, the inverse
operation of Rijndael may be slower than the forward operation. However, the performance
drop should not be overrated. We give a quick overview of the different issues.

Two implementation models Generally speaking, we can distinguish the software im-
plementations of Rijndael in two categories. The first type of implementation combines the
operations ByteSub and MixColumn in large tables. This implementation is suited for 32-bit
and higher platforms. The implementations of the cipher and the inverse cipher have the
same performance. The round keys for inverse operation are derived from the round keys for
forward operation by means of a simple procedure.

The second type of implementation implements each operation explicitly, using a few
small tables only. The inverse operation is not as performant as the forward operation, but
both operations are quite fast compared to the other candidates (cf. [14]). In this type of
implementation, the round keys for inverse operation are equal to the round keys for forward
operation, but used in a different order. We see that the currently available implementations
require a longer key setup for the inverse operation. We explain below how the inverse round
key setup can be sped up for most applications.

The key setup For simplicity, we discuss only the case of 128-bit keys, but a similar
reasoning holds for the other key lengths.

The key expansion takes the key k as input and applies repeatedly a nonlinear transfor-
mation to it. Let this transformation be denoted by r. The round keys k; are simply the
outputs of this transformation r.

ke = k
kl = 'r'(k)
ky = r(ky) =r(r(k)) = (ror)(k)

In applications where only a few data blocks need to be encrypted, RAM is scarce, or key
agility is important, the round keys are usually not calculated in advance, but r is executed
in parallel with the actual cipher operations. This technique seems to be used in most
implementations on this kind of platforms (cf. [14, 19]).

Most implementations of the inverse operation are suboptimal in this respect, because
they first go through a setup phase to determine all round keys from the supplied key, before
executing the inverse operation, round by round, using the precalculated round keys in inverse
order.

We want to point out that for many applications, it might be better to calculate kg
only once, and store it for future use. In some applications, where a given machine needs
to implement the decryption operation only, the value of the key k can be overwritten with
k1o Indeed, because the transformation r is invertible, all round keys can also be derived as
follows:

ke = 1 (k)
ks = (rtor Y)(kw)=r"(r""(kw))

In this way, the round keys are calculated in the order they are needed during the inverse
operation.

3.3 Jave performance

Both in the NIST tests [8] and the independently developed implementations of [22], it can be
seen that Rijndael performs reasonably well. The results of [11] are based on the performance
of the KAT and MCT tests, instead of the performance of the algorithms themselves. Given
the difference in performance between Rijndael and Crypton, two very similar algorithms, on
these tests, it seems that the influence of the implementation of the tests weighs too heavily
on the results.

Perhaps the most striking conclusion can be made by comparing the performance of the
10-round and the 14-round versions of the Rijndael implementations in [8, 22]. It turns out
that 80% [8], respectively 27% [22] of the time is spent in operations that do not scale with
the number of rounds. It is not clear to us whether this is a Java feature, or something
specific for Rijndael. (This could be investigated by measuring the performance of the other
candidates for a different number of rounds.)

As a final note, we want to comment on the ‘implementation difficulty ratings’ in [22].
We agree that implementation difficulty can be a topic to consider. However, in that case, a
distinction should be made between the difficulty of making a correct implementation, and
the difficulty of getting a performance-optimised implementation.

3.4 Corrections to [20]

The authors of [20] try to give an overview of all the candidates’ performance on many differ-
ent platforms. Given the wide scope of the paper, it seems inevitable that some inaccurracies
remain undetected for a long while. We point out some mistakes that in our view are impor-
tant for the case of Rijndael.

A first inaccuracy is related to the performance of the algorithms on memory-limited 8-bit
smart cards. We repeat the authors’ figures in the left hand side of Table 1.

Table 1: Smart Card RAM requirements (bytes).

according to [20] corrected numbers
Algorithm 128-bit key 128-bit key | 256-bit key
Rijndael 52 36 52
Serpent 50 80 80
Twofish 64 64 88

As explained in the Rijndael submission [6], the 52 bytes are only required for a key length
of 256 bits. For a 128-bit key, this number is reduced to 36. Secondly, it is unclear where the
authors obtained the quoted number of 50 bytes for a Serpent implementation. The Serpent
designers state “less than 80 bytes” [1]. A quick evaluation of the description learns that
any Serpent implementation requires at the very least 32 bytes for the key (which is always
expanded to 256 bits), 16 bytes for the current round key and 16 bytes for the text. Thirdly,
we learn from the Twofish documentation [21], that 64 bytes are required for 128-bit key

lengths. For 256-bit key lengths, at least 88 bytes are required. Another overview of the
candidates’ performance on smart cards can be found on the web page of G. Keating [14].

A second point that needs some clarification, lies in the various comparisons of assembly
implementation of the algorithms. As the authors state clearly, they used the best perfor-
mance estimates available to rank the candidates. It should be noted here that only Twofish
has been implemented with in-compiled key, because many programmers feel that in prac-
tice, in-compiled key code will not be used. Leaving this issue to the specialists, it is clear
that for the sake of comparison either all algorithms should be implemented in this way, or
none at all. While the performance of most algorithms will not change dramatically when
in-compiled keys are used, the change will probably be sufficient to disrupt the ranking of the
top algorithms as presented in [20].

References

[1] R. Anderson, E. Biham, L.R. Knudsen, Serpent and smartcards, presented at CARDIS
’98, available from http//www.cl.cam.ac.uk/ rjald/serpent.html.

[2] E. Biham, N. Keller, Cryptanalysis of reduced variants of Rijndael, AES3.
[3] E. Biham, A. Shamir, Power analysis of the key scheduling of the AES candidates, AES2.

[4] S. Chari, C. Jutla, J. Rao, P. Rohatgi, A cautionary note regarding evaluation of AES
candidates on smart cards, AES2.

[6] S. Chari, C. Jutla, J. Rao, P. Rohatgi, Towards Sound Approaches to Counteract Power-
Analysis Attacks, Crypto’99, LNCS 1666.

[6] J. Daemen, V. Rijmen, AES Proposal: Rijndael, official documentation.

[7] J. Daemen, V. Rijmen, Resistance against implementation attacks: a comparative study
of the AES proposals, AES2.

[8] J. Dray, NIST performance analysis of the final round Java AES candidates, AES3.

[9] A.J. Elbirt, W. Yip, B. Chetwynd, C. Paar, An FPGA implementation and performance
evaluation of the AES block cipher candidate algorithm finalists, AES3.

[10] N. Ferguson, J. Kelsey, B. Schneier, M. Stay, D. Wagner, D. Whiting, Improved crypt-
analysis of Rijndael, FSE2000.

[11] A. Folmsbee, AES Java technology comparisons, AES2.

[12] H. Gilbert, M. Minier, A collision attack on 7 rounds of Rijndael, AES3.

[13] D. Johnson, AES and future resiliency: more thoughts and questions, AES3.
[14] G. Keating, http://www.ozemail.com.au/~geoffk/aes-6805/.

[15] S. Lucks, Attacking 7 rounds of Rijndael under 192-bit and 256-bit keys, AES3.

[16] T. Messerges, Securing the AES finalists against power analysis attacks, FSE2000.

[17]

[18]
[19]

[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

S. Moriai, S. Vaudenay, Comparison of randomness provided by several schemes for block
ciphers, AES3 submission.

D. Patel, The AES winner, AES3 submission.

F. Sano, M. Koike, S. Kawamura, M. Shiba, Performance evaluation of AES finalists on
the high-end smart card, AES3.

B. Schneier, D. Whiting, A performance comparison of the five AES finalists, AES3.
B. Schneier et al., Twofish - a block encryption algorithm, AES].
A. Sterbenz, P. Lipp, Performance of the AES candidate algorithms in Java, AES3.

M. Sugita, K. Kobara, H. Imai, Pseudorandomness and maximum average of differential
probability of block ciphers with SPN-structures like E2, AES2.

M. Sugita, K. Kobara, K. Uehara, S. Kubota, H. Imai, Relationships among differential,
truncated differential, impossible differential cryptanalyses against word-oriented block
ciphers like Rijndael, E2, AES3.

R. Weiss, N. Binkert, A comparison of AES candidates on the Alpha 21264.

T.J. Wollinger, M. Wang, J. Guajardo, C. Paar, How well are high-end DSPs suited for
the AES algorithms, AES3.

J. Worley, B. Worley, T. Christian, C. Worley, AES finalists on PA-RISC and TA-64:
implementation & performance, AES3.

